

Aviation Formulary V1.24

By Ed Williams

--

Table of Contents

* Introduction to Great Circle Navigation Formulae
* Great Circle Navigation Formulae

o Distance between points
o Course between points
o Latitude of point on GC
o Lat/lon given radial and distance
o Intersection of two radials
o Clairaut's formula
o GC crossing parallel
o Cross track error

* Implementation notes
o Atan, atan2, acos, asin and mod functions
o Sign conventions

* Worked examples
* Some general spherical triangle formulae.
* Rhumb Line Navigation
* Wind Triangles
* Variation
* Altimetry and the standard atmosphere formulae
* Mach numbers, true vs calibrated airspeeds etc.
* Relative humidity related to temperature and dewpoint or frostpoint
* Bellamy's formula for the wind drift
* Unit conversions, etc.
* Turns and pivotal altitude.
* Revision History

Javascript calculator with elliptical earth models

--

Introduction

This introduction is written for pilots (and others) who are interested in
great circle navigation and would like to know how to compute courses,
headings and other quantities of interest. These formulae can be programmed
into your calculator or spreadsheet. I'll attempt to include enough
information that those familiar with plane trigonometry can derive
additional results if required.

It is a well known that the shortest distance between two points is a
straight line. However anyone attempting to fly from Los Angeles to New York
on the straight line connecting them would have to dig a very substantial
tunnel first. The shortest distance, following the earth's surface lies
vertically above the aforementioned straight line route. This route can be
constructed by slicing the earth in half with an imaginary plane through LAX
and JFK. This plane cuts the (assumed spherical) earth in a circular arc
connecting the two points, called a great circle. Only planes through the
center of the earth give rise to great circles. Any plane will cut a sphere
in a circle, but the resulting little circles are not the shortest distance
between the points they connect. A little thought will show that lines of
longitude (meridians) are great circles, but lines of latitude, with the
exception of the equator, are not.

I will assume the reader is familiar with latitude and longitude as a means
of designating locations on the earth's surface. For the convenience of
North Americans I will take North latitudes and West longitudes as positive

and South and East negative. The longitude is the opposite of the usual
mathematical convention. True course is defined as usual, as the angle
between the course line and the local meridian measured clockwise.

The first important fact to realise is that in general a great circle route
has a true course that varies from point to point. For instance the great
circle route between two points of equal (non-zero) latitude does not follow
the line of latitude in an E-W direction, but arcs towards the pole. It is
possible to fly between two points using an unvarying true course, but in
general the resulting route differs from the great circle route and is
called a rhumb line. Unlike a great circle which encircles the earth, a
pilot flying a rhumb line would spiral indefinitely poleward.

Natural questions are to seek the great circle distance between two
specified points and true course at points along the route. The required
spherical trigonometric formulae are greatly simplified if angles and
distances are measured in the appropriate natural units, which are both
radians! A radian, by definition, is the angle subtended by a circular arc
of unit length and unit radius. Since the length of a complete circular arc
of unit radius is 2*pi, the conversion is 360 degrees equals 2*pi radians,
or:

angle_radians=(pi/180)*angle_degrees
angle_degrees=(180/pi)*angle_radians

Great circle distance can be likewise be expressed in radians by defining
the distance to be the angle subtended by the arc at the center of the
earth. Since by definition, one nautical mile subtends one minute (=1/60
degree) of arc, we have:

distance_radians=(pi/(180*60))*distance_nm
distance_nm=((180*60)/pi)*distance_radians

In all subsequent formulae all distances and angles, such as latitudes,
longitudes and true courses will be assumed to be given in radians, greatly
simplifying them, and in applications the above formulae and their inverses
are necessary to convert back and forth between natural and practical units.
Examples of this process are given later.

--

Some great circle formulae:

Distance between points

The great circle distance d between two points with coordinates {lat1,lon1}
and {lat2,lon2} is given by:

d=acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(lon1-lon2))

A mathematically equivalent formula, which is less subject to rounding error
for short distances is:

d=2*asin(sqrt((sin((lat1-lat2)/2))^2 +
cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2))^2))

--

Course between points

We obtain the initial course, tc1, (at point 1) from point 1 to point 2
by the following. The formula fails if the initial point is a pole. We can
special case this with:

IF (cos(lat1) < EPS) // EPS a small number ~ machine precision
IF (lat1 > 0)

tc1= pi // starting from N pole
ELSE

tc1= 0 // starting from S pole
ENDIF

ENDIF

IF sin(lon2-lon1)<0
tc1=acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1)))

ELSE
tc1=2*pi-acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1)))

ENDIF

An alternative formula, not requiring the pre-computation of d, the distance
between the points, is:

tc1=mod(atan2(sin(lon1-lon2)*cos(lat2),
cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon1-lon2)), 2*pi)

--

Latitude of point on GC

Intermediate points {lat,lon} lie on the great circle connecting points 1
and 2 when:

lat=atan((sin(lat1)*cos(lat2)*sin(lon-lon2)
-sin(lat2)*cos(lat1)*sin(lon-lon1))/(cos(lat1)*cos(lat2)*sin(lon1-lon2)))

(not applicable for meridians. i.e if sin(lon1-lon2)=0)

--

Lat/lon given radial and distance

A point {lat,lon} is a distance d out on the tc radial from point 1 if:

lat=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc))
IF (cos(lat)=0)

lon=lon1 // endpoint a pole
ELSE

lon=mod(lon1-asin(sin(tc)*sin(d)/cos(lat))+pi,2*pi)-pi
ENDIF

This algorithm is limited to distances such that dlon <pi/2, i.e those that
extend around less than one quarter of the circumference of the earth in
longitude. A completely general, but more complicated algorithm is necessary
if greater distances are allowed:

lat =asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc))
dlon=atan2(sin(tc)*sin(d)*cos(lat1),cos(d)-sin(lat1)*sin(lat))
lon=mod(lon1-dlon +pi,2*pi)-pi

--

Intersecting radials

Now how to compute the latitude, lat3, and longitude, lon3 of an
intersection formed by the crs13 true bearing from point 1 and the crs23
true bearing from point 2:

dst12=2*asin(sqrt((sin((lat1-lat2)/2))^2+

cos(lat1)*cos(lat2)*sin((lon1-lon2)/2)^2))
IF sin(lon2-lon1)<0

crs12=acos((sin(lat2)-sin(lat1)*cos(dst12))/(sin(dst12)*cos(lat1)))
ELSE

crs12=2.*pi-acos((sin(lat2)-sin(lat1)*cos(dst12))/(sin(dst12)*cos(lat1)))
ENDIF
IF sin(lon1-lon2)<0

crs21=acos((sin(lat1)-sin(lat2)*cos(dst12))/(sin(dst12)*cos(lat2)))
ELSE

crs21=2.*pi-acos((sin(lat1)-sin(lat2)*cos(dst12))/(sin(dst12)*cos(lat2)))
ENDIF

ang1=mod(crs13-crs12+pi,2.*pi)-pi
ang2=mod(crs21-crs23+pi,2.*pi)-pi

IF (sin(ang1)*sin(ang2)<=sqrt(TOL))
"no intersection exists"

ELSE
ang1=abs(ang1)
ang2=abs(ang2)
ang3=acos(-cos(ang1)*cos(ang2)+sin(ang1)*sin(ang2)*cos(dst12))
dst13=asin(sin(ang2)*sin(dst12)/sin(ang3))
dst23=asin(sin(ang1)*sin(dst12)/sin(ang3))
lat3=asin(sin(lat1)*cos(dst13)+cos(lat1)*sin(dst13)*cos(crs13))
lon3=mod(lon1-asin(sin(crs13)*sin(dst13)/cos(lat3))+pi,2*pi)-pi

ENDIF

TOL is a small number of order machine precision. 10^-15 would be OK for
standard double precision arithmetic.

--

Clairaut's formula:

This relates the latitude (lat) and true course (tc) along any great circle,
namely: sin(tc)*cos(lat)=constant. That is, for any two points on the GC:

sin(tc1)*cos(lat1)=sin(tc2)*cos(lat2)

Since at the highest latitude (latmx) reached the tc must be 90/270, we also
have:

latmx=acos(abs(sin(tc)*cos(lat)))

where lat and tc are the latitude and true course at *any* point on the
great circle.
--

Crossing parallels:

Any given great circle (excepting one over the poles) crosses each meridian
once and only once. However, any given great circle has a maximum latitude
reached at its apex. It crosses lower latitudes twice and higher latitudes
never. Thus the algorithm for finding the longitudes at which a given great
circle crosses a given parallel is a little more complex.

Suppose a great circle passes through (lat1,lon1) and (lat2,lon2). It
crosses the parallel lat3 at longitudes lon3_1 and lon3_2 given by:

l12 = lon1-lon2
A = sin(lat1)*cos(lat2)*cos(lat3)*sin(l12)
B = sin(lat1)*cos(lat2)*cos(lat3)*cos(l12) - cos(lat1)*sin(lat2)*cos(lat3)
C = cos(lat1)*cos(lat2)*sin(lat3)*sin(l12)
lon = atan2(B,A) (atan2(y,x) convention)

IF (C >sqrt(A^2 + B^2))
"no crossing"

ELSE
dlon = acos(C/sqrt(A^2+B^2))
lon3_1=mod(lon1+dlon+lon+pi, 2*pi)-pi
lon3_2=mod(lon1-dlon+lon+pi, 2*pi)-pi

ENDIF

--

Cross track error:

Suppose you are proceeding on a great circle route from A to B (course
=crs_AB) and end up at D, perhaps off course. You can calculate the course
from A to D (crs_AD) and the distance from A to D (dist_AD) using the
formulae above. In terms of these the cross track error, XTD, (distance off
course) is given by

XTD =asin(sin(dist_AD)*sin(crs_AD-crs_AB))

(positive XTD means right of course, negative means left)

--

Implementation notes:

Notes on mathematical functions

Note: ^ denotes the exponentiation operator, sqrt is the square root
function, acos the arc-cosine (or inverse cosine) function and asin is the
arc-sine function. If asin or acos are unavailable they can be implemented
using the atan2 function:

acos(x)=atan2(sqrt(1-x^2),x)
acos returns a value in the range 0 <= acos <= pi

asin(x)=atan2(x,sqrt(1-x^2))}
asin returns a value in the range -pi/2 <= asin <= pi/2

Note: Here atan2 has the conventional (C) ordering of arguments, namely
atan2(y,x). This is not universal, Excel for instance uses atan2(x,y), but
it has asin and acos anyway. Be warned. It returns a value in the range -pi
< atan2 <= pi.

Further note: if your calculator/programming language is so impoverished
that only atan is available then use:

atan2(y,x)=atan(y/x) x>0
atan2(y,x)=atan(y/x)+pi x<0, y>=0
atan2(y,x)=pi/2 x=0, y>0
atan2(y,x)=atan(y/x)-pi x<0, y<0
atan2(y,x)=-pi/2 x=0, y<0
atan2(0,0) is undefined and should give an error.

Another potential implementation problem is that the arguments of asin
and/or acos may, because of rounding error, exceed one in magnitude. With
perfect arithmetic this can't happen. You may need to use "safe" versions of
asin and acos on the lines of:

asin_safe(x)=asin(max(-1,min(x,1)))
acos_safe(x)=acos(max(-1,min(x,1)))

Note on the mod function. This appears to be implemented differently in
different languages. Mod(y,x) is the remainder on dividing y by x and always
lies in the range 0 <=mod <x. The following should be bulletproof:

FUNCTION mod(y,x)

IF y>=0
mod=y- x*int(y/x)

ELSE
mod=y+ x*(int(-y/x)+1)

ENDIF

Sign Convention

As stated in the introduction, North latitudes and West longitudes are
treated as positive, and South latitudes and East longitudes negative. It's
easier to go with the flow, but if you prefer another convention you can
change the signs in the formulae.

--

Worked Examples:

Suppose point 1 is LAX: (33deg 57min N, 118deg 24min W)
Suppose point 2 is JFK: (40deg 38min N, 73deg 47min W)

In radians LAX is

(33+57/60)*pi/180=0.592539, (118+24/60)*pi/180=2.066470

and JFK is

(0.709186,1.287762)

The distance from LAX to JFK is

d=acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(lon1-lon2))
=acos(sin(0.592539)*sin(0.709186)+

cos(0.592539)*cos(0.709186)*cos(0.778708))
=acos(0.811790)
=0.623585 radians
=0.623585*180*60/pi=2144nm

The initial true course out of LAX is:

sin(-0.778708)=-0.702<0 so

tc1=acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1)))
=acos((sin(0.709186)-sin(0.592539)*cos(0.623585))/

(sin(0.623585)*cos(0.592535))
=acos(0.408455)
=1.150035 radians
=66 degrees

An enroute waypoint 100nm from LAX on the 66 degree radial (100nm along the
GC to JFK) has lat and long given by:

100nm = 100*pi/(180*60)=0.0290888radians
lat=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc))

=asin(sin(0.592539)*cos(0.0290888)
+cos(0.592539)*sin(0.0290888)*cos(1.150035))

=asin(0.568087)
=0.604180radians
=34degrees 37min N

lon=lon1-asin(sin(tc)*sin(d)/cos(lat))
=2.066470- asin(sin(1.150035)*sin(0.0290888)/cos(0.604180))
=2.034206 radians
=116 degrees 33min W

The great circle route from LAX to JFK crosses the 111degree W meridian at a
latitude of:

(111degrees=1.937315 radians)

lat=atan((sin(lat1)*cos(lat2)*sin(lon-lon2)
-sin(lat2)*cos(lat1)*sin(lon-lon1))/(cos(lat1)*cos(lat2)*sin(lon1-lon2)))
=atan((sin(0.592539)*cos(0.709186)*sin(0.649553)
-sin(0.709186)*cos(0.592539)*sin(-0.129154))/(cos(0.592539)*cos(0.709186)

*sin(0.778708)))
=atan(0.737110)
=0.635200radians
=36 degrees 24min

Cross track error

Suppose enroute from JFK to LAX you find yourself at (D) N34:30 W116:30,
which in radians is (0.6021386,2.033309) (See earlier for LAX, JFK
coordinates and course)

From LAX to D the distance is:

dist_AD=acos(sin(0.592539)*sin(0.6021386)+
cos(0.592539)*cos(0.6021386)*cos(2.066470-2.033309))
=0.02905 radians (99.8665 nm)

From LAX to D the course is:

crs_AD=acos((sin(0.6021386)-sin(0.592539)*cos(0.02905))/
(sin(0.02905)*cos(0.592539)))

=1.22473 radians (70.17 degrees)

At point D the cross track error is:

xtk= asin(sin(0.02905)*sin(1.22473-1.15003))
=0.00216747 radians
= 0.00216747*180*60/pi =7.4512 nm right of course

Example of an intersection calc (briefly):

Let point 1 be REO (42.60N,117.866W)=(0.74351,2.05715)rad
Let point 2 be BKE (44.84N,117.806W)=(0.782606,2.056103)rad

The 51 degree (=0.890118rad) bearing from REO intersects with 137 degree
(=2.391101rad) from BKE at (lat3,lon3):

Then:

dst12=0.039103
crs12=0.018996
crs21=3.161312
ang1=0.871122
ang2=0.770211
ang3=1.500667
dst13=0.02729
dst23=0.029986
lat3=0.760473 =43.5N
lon3=2.027876 =116.2W at BOI!

--

Some general spherical triangle formulae.

A spherical triangle is one whose sides are all great circular arcs. Let the
sides have lengths a,b and c radians, and the opposite angles be A, B and C
radians.

c
A -------B
\ |
\ |
\b |a
\ |
\ |
\ |
\C|
\|

(The angle at B is not necessarily a right angle)

sin(a) sin(b) sin(c)
----- = ------ = ------
sin(A) sin(B) sin(C)

cos(a)=cos(b)*cos(c)+sin(b)*sin(c)*cos(A)
cos(b)=cos(c)*cos(a)+sin(c)*sin(a)*cos(B)
cos(c)=cos(a)*cos(b)+sin(a)*sin(b)*cos(C)

cos(A)=-cos(B)*cos(C)+sin(B)*sin(C)*cos(a)
cos(B)=-cos(C)*cos(A)+sin(C)*sin(A)*cos(b)
cos(C)=-cos(A)*cos(B)+sin(A)*sin(B)*cos(c)

Some useful consequences of these are:

tan(A)=sin(B)*sin(a)/(sin(c)*cos(a)-cos(B)*cos(c)*sin(a))
tan(B)=sin(C)*sin(b)/(sin(a)*cos(b)-cos(C)*cos(a)*sin(b))
tan(C)=sin(A)*sin(c)/(sin(b)*cos(c)-cos(A)*cos(b)*sin(c))

tan(a)=sin(b)*sin(A)/(sin(C)*cos(A)+cos(b)*cos(C)*sin(A))
tan(b)=sin(c)*sin(B)/(sin(A)*cos(B)+cos(c)*cos(A)*sin(B))
tan(c)=sin(a)*sin(C)/(sin(B)*cos(C)+cos(a)*cos(B)*sin(C))

Given *any* three of {a,b,c,A,B,C} the remaining sides and angles can be
found from the above formulae.

To solve a spherical triangle (requiring 0< a,b,c,A,B,C <pi
to get rid of pathological cases):

Given {A,b,c}: // Two sides, included angle
a=acos(cos(b)*cos(c)+sin(b)*sin(c)*cos(A))
B=acos((cos(b) - cos(c)*cos(a))/(sin(c)*sin(a)))
C=acos((cos(c) - cos(a)*cos(b))/(sin(a)*sin(b)))

Given {a,B,C}: // Two angles, included side
A=acos(-cos(B)*cos(C)+sin(B)*sin(C)*cos(a))
b=atan2(sin(a)*sin(B)*sin(C),cos(B)+cos(C)*cos(A))
c=atan2(sin(a)*sin(B)*sin(C),cos(C)+cos(A)*cos(B))

Given {a,b,c}: // Three sides
A=acos((cos(a) - cos(b)*cos(c))/(sin(b)*sin(c)))
B=acos((cos(b) - cos(c)*cos(a))/(sin(c)*sin(a)))
C=acos((cos(c) - cos(a)*cos(b))/(sin(a)*sin(b)))

Given {A,B,C}: // Three angles (this has an infinity of solutions
for plane triangles and so is numerically inaccurate for small
spherical triangles)

delta=(A+B+C-pi)/2

a=2*asin(sqrt(sin(delta)*sin(A-delta)/(sin(B)*sin(C))))
b=2*asin(sqrt(sin(delta)*sin(B-delta)/(sin(C)*sin(A))))
c=2*asin(sqrt(sin(delta)*sin(C-delta)/(sin(A)*sin(B))))

Given {A,a,b}: // Two sides, non-included angle
x=sin(A)*sin(b)/sin(a)
if (x=1) {

B=pi/2 // One spherical triangle exists
} else if (x < 1) {

B= asin(x) and pi-asin(x) // Two triangles exist
} else{

// No triangles exist
}
For each triangle
c=mod(2*atan2(cos((A+B)/2)*sin((a+b)/2),cos((A-B)/2)*cos((a+b)/2)),2*pi)
C=mod(2*atan2(cos((a-b)/2)*cos((A+B)/2),cos((a+b)/2)*sin((A+B)/2)),2*pi)

Given {a,A,B}: // Two angles, non-included side
x=sin(a)*sin(B)/sin(A)
if (x=1) {

b=pi/2 // One spherical triangle exists
} else if (x < 1) {

b=asin(x) and pi-asin(x) // Two triangles exist
} else{

// No triangles exist
}
For each triangle
c=mod(2*atan2(cos((A+B)/2)*sin((a+b)/2),cos((A-B)/2)*cos((a+b)/2)),2*pi)
C=mod(2*atan2(cos((a-b)/2)*cos((A+B)/2),cos((a+b)/2)*sin((A+B)/2)),2*pi)

Note that for a spherical triangle A+B+C is not pi (180 degrees) but
greater.
The difference is called the spherical excess E, defined as E=A+B+C-pi.
In terms of which the surface area enclosed by a spherical triangle is given
by

Area = E*R^2

In terms of the sides:

E = 4*sqrt(atan(tan(s/2)*tan((s-a)/2)*tan((s-b)/2)*tan((s-c)/2)))

where

s = (a+b+c)/2

analogous to Heron's formula for a plane triangle.

Some other formulae that may occasionally be useful are:

sin(A/2) = sqrt((sin(s-b)*sin(s-c))/(sin(b)*sin(c)))
cos(A/2) = sqrt((sin(s)*sin(s-a))/(sin(b)*sin(c)))
tan(A/2) = sin((b-c)/2)/(sin((b+c)/2)*tan((B-C)/2))

= cos((b-c)/2)/(cos((b+c)/2)*tan((B+C)/2))
tan(a/2) = cos((B+C)/2)*tan((b+c)/2)/cos((B-C)/2)

= sin((B+C)/2)*tan((b-c)/2)/sin((B-C)/2)
tan((A-B)/2)=cot(C/2)*sin((a-b)/2)/sin((a+b)/2)
tan((A+B)/2)=cot(C/2)*cos((a-b)/2)/cos((a+b)/2)
sin(a)*cos(B)=cos(b)*sin(c)-sin(b)*cos(c)*cos(A)
cos(a)*cos(C)=sin(a)*cot(b)-sin(C)*cot(B)

In these formulae, A, B and C can be interchanged, provided a, b and c
change with them.

ie a->b, b->c, c->a, A->B, B->C, C->A.
In addition, the formulae hold if pi-a is written for A,
pi-b for B and pi-c for C, etc.

ie A->pi-a, B->pi-b, C->pi-c, a->pi-A, b->pi-B, c->pi-C
--

Rhumb Line Navigation

Rhumb lines or loxodromes are tracks of constant true course. With the
exception of meridians and the equator, they are not the same as great
circles. They are not very useful approaching either pole, where they become
tightly wound spirals. The formulae below fail if any point actually is a
pole.

When two points (lat1,lon1), (lat2,lon2) are connected by a rhumb line with
true course tc :

lon2-lon1=-tan(tc)*(log((1+sin(lat2))/cos(lat2))-
log((1+sin(lat1))/cos(lat1)))

=-tan(tc)*(log((1+tan(lat2/2))/(1-tan(lat2/2)))-
log((1+tan(lat1/2))/(1-tan(lat1/2))))

=-tan(tc)*(log(tan(lat2/2+pi/4)/tan(lat1/2+pi/4)))

(logs are "natural" logarithms to the base e.)

The true course between the points is given by:

tc= mod(atan2(lon1-lon2,log(tan(lat2/2+pi/4)/tan(lat1/2+pi/4))),2*pi)

The dist, d between the points is given by:

if (abs(lat2-lat1) < sqrt(TOL)){
q=cos(lat1)

} else {
q= (lat2-lat1)/log(tan(lat2/2+pi/4)/tan(lat1/2+pi/4))

}
d=sqrt((lat2-lat1)^2+ q^2*(lon2-lon1)^2)

This formula fails if the rhumb line in question crosses the 180 E/W
meridian. Allowing this as a possibility, the true course tc, and distance
d, for the shortest rhumb line connecting two points is given by:

dlon_W=mod(lon2-lon1,2*pi)
dlon_E=mod(lon1-lon2,2*pi)
dphi=log(tan(lat2/2+pi/4)/tan(lat1/2+pi/4))
if (abs(lat2-lat1) < sqrt(TOL)){

q=cos(lat1)
} else {

q= (lat2-lat1)/dphi
}
if (dlon_W < dlon_E){// Westerly rhumb line is the shortest

tc=mod(atan2(-dlon_W,dphi),2*pi)
d= sqrt(q^2*dlon_W^2 + (lat2-lat1)^2)

} else{
tc=mod(atan2(dlon_E,dphi),2*pi)
d= sqrt(q^2*dlon_E^2 + (lat2-lat1)^2)
}

To find the lat/lon of a point on true course tc, distance d from
(lat1,lon1) along a rhumbline (initial point cannot be a pole!):

lat= lat1+d*cos(tc)
dphi=log(tan(lat/2+pi/4)/tan(lat1/2+pi/4))
IF (abs(lat-lat1) < sqrt(TOL)){

q=cos(lat1)
} ELSE {

q= (lat-lat1)/dphi
}
dlon=-d*sin(tc)/q
lon=mod(lon1+dlon+pi,2*pi)-pi

TOL is a small number of order machine precision- say 1e-15. The tests avoid
0/0 indeterminacies on E-W courses.

Example:

Suppose point 1 is LAX: (33deg 57min N, 118deg 24min W)
Suppose point 2 is JFK: (40deg 38min N, 73deg 47min W)

Rhumb line course from LAX to JFK:
LAX (0.592539,2.066470) radians and JFK is (0.709185,1.287762) radians

dlon_W=mod(1.287762-2.066470,2*pi)=5.504478
dlon_E=mod(2.066470-1.287762,2*pi)=0.778708

dphi=log(tan(0.709185/2+pi/4)/tan(0.592539/2+pi/4))
=0.146801

q= (0.709185-0.592539)/0.146801 =0.794586
dlon_E < dlon_W: East is shorter!

tc=mod(atan2(0.778708,0.146801),2*pi)= 1.384464 radians = 79.32 degrees
d=sqrt(0.794586^2*0.778708^2 + (0.709185-0.592539)^2)
= 0.629650 radians = 2164.6 nm

Compare this with the great circle course of 66 degrees and distance of 2144
nm.

Conversely, if we proceed 2164.6nm (0.629650 radians) on a rhumbline course
of 79.3 degrees (1.384464 radians) starting at LAX, our final point will be
given by:

lat=0.592539 + 0.629650 * cos(1.384464)
= 0.709185

dphi=log(tan(0.709185/2+pi/4)/tan(0.592539/2+pi/4))
=0.146801

q= (0.709185-0.592539)/0.146801 =0.794586
dlon=-0.629650*sin(1.384464)/0.794586=-0.778708
lon=mod(2.066470-0.778708+pi,2*pi)-pi

=1.287762

which is the lat/lon of JFK- as required.

--

Wind Triangles

In all formulae, all angles are in radians. Convert back and forth as in the
Great Circle section. [This is unnecessary on calculators which have a
"degree mode" for trig functions. Most programming languages provide only
"radian mode".]

angle_radians=(pi/180)*angle_degrees
angle_degrees=(180/pi)*angle_radians

A further conversion is required if using degrees/minutes/seconds:

angle_degrees=degrees+(minutes/60.)+(seconds/3600.)

degrees=int(angle_degrees)
minutes=int(60*(angle_degrees-degrees))

seconds=60*(60*(angle_degrees-degrees)-minutes))

[You may have a built-in HH <-> HH:MM:SS conversion to do this efficiently]

Let CRS=course, HD=heading, WD=wind direction (from), TAS=True airpeed,
GS=groundspeed, WS=windspeed.

Units of the speeds do not matter as long as they are all the same.

(1) Unknown Wind:

WS=sqrt((TAS-GS)^2+ 4*TAS*GS*(sin((HD-CRS)/2))^2)
WD=CRS + atan2(TAS*sin(HD-CRS), TAS*cos(HD-CRS)-GS) (**)
IF (WD<0) THEN WD=WD+2*pi
IF (WD>2*pi) THEN WD=WD-2*pi

((**) assumes atan2(y,x), reverse arguments if your implementation
has atan2(x,y))

(2) Find HD, GS

SWC=(WS/TAS)*sin(WD-CRS)
IF (abs(SWC)>1)

"course cannot be flown-- wind too strong"
ELSE

HD=CRS+asin(SWC)
if (HD<0) HD=HD+2*pi
if (HD>2*pi) HD=HD-2*pi
GS=TAS*sqrt(1-SWC^2)-WS*cos(WD-CRS)

ENDIF

Note:
The purpose of the "if (HD<0) HD=HD+2*pi; if (HD>2*pi) HD=HD-2*pi" is
to ensure the final heading ends up in the range (0, 2*pi). Another way
to do this, with the MOD function available is:

HD=MOD(HD,2*pi)

(3) Find CRS, GS

GS=sqrt(WS^2 + TAS^2 - 2*WS*TAS*cos(HD-WD))
WCA=atan2(WS*sin(HD-WD),TAS-WS*cos(HD-WD)) (*)
CRS=MOD(HD+WCA,2*pi)

(*) WCA=asin((WS/GS)*sin(HD-WD)) works if the wind correction angle is less
than 90 degrees, which will always be the case if WS < TAS. The listed
formula works in the general case

--

Approximate variation formulae.

I did a least squares polynomial fit to the NFDC airport database.

x=latitude (N degrees) y=longitude (W degrees) var= variation (degrees)

var= -65.6811 + 0.99*x + 0.0128899*x^2 - 0.0000905928*x^3 + 2.87622*y -
0.0116268*x*y - 0.00000603925*x^2*y - 0.0389806*y^2 -
0.0000403488*x*y^2 + 0.000168556*y^3

Continental US only, 3771 points, RMS error 1 degree All within 2 degrees
except for the following airports: MO49 MO86 MO50 3K6 02K and KOOA

(24 < x < 50, 66 < y < 125)

Alaska Fit, better than 1 degree, all points:
var= 618.854 + 2.76049*x - 0.556206*x^2 + 0.00251582*x^3 - 12.7974*y +

0.408161*x*y + 0.000434097*x^2*y - 0.00602173*y^2 -
0.00144712*x*y^2 + 0.000222521*y^3

55 points (x > 54, 130 < y < 172)

For Western Europe, fitting to the 1997 IGRF reference field:

var =10.4768771667158 -0.507385322418858*lon +0.00753170031703826*lon^2-
1.40596203924748e-05*lon^3 -0.535560699962353*lat +
0.0154348808069955*lat*lon -8.07756425110592e-05*lat*lon^2 +
0.00976887198864442*lat^2 -0.000259163929798334*lat^2*lon-
3.69056939266123e-05*lat^3;

Here *East* lon is positive! In the range -10 < lon < 28, 36 < lat < 68 RMS
error = 0.04 degrees, max error 0.20 degrees.

I've written software that computes magnetic variation anywhere on (or
above) the earth's surface, using either the WMM or IGRF reference models.
There are Mac , DOS and Linux executables available.

--

Standard Atmosphere and Altimetry

The following contains some formulae concerning altimetry and the standard
atmosphere (1976 International Standard Atmosphere).

At sea-level on a standard day:

the temperature, T_0 = 59F = 15C = 288.15K (C=Celsius K=Kelvin,
T(Kelvin)=T(Celsius)+273.15)

the pressure, P_0 = 29.92126 "Hg = 1013.250 mB = 2116.2166 lbs/ft^2
= 760.0 mmHg = 101325.0 Pa = 14.69595 psi = 1.0 atm

the air density, rho_0 = 1.2250 kg/m^3 = 0.002376892 slugs/ft^3

The standard lapse rate is T_r= 0.0065C/m = .0019812C/ft below the
tropopause h_Tr= 11.0km= 36089.24ft

Above the tropopause, standard temperature is T_Tr= -56.5C= 216.65K (up to
an altitude of 20km) Standard temperature at altitude h is thus given by:

T_s= T_0- T_r*h (h < h_Tr)
= T_Tr (h > h_Tr)
= 15-.0019812*h(ft) C (h < 36089.24ft)

--

Variation of pressure with altitude:

p= P_0*(1-6.8755856*10^-6 h)^5.2558797 h<36,089.24ft
p_Tr= 0.2233609*P_0
p=p_Tr*exp(-4.806346*10^-5(h-36089.24)) h>36,089.24ft

--

Variation of density with altitude:

rho=rho_0*(1.- 6.8755856*10^-6 h)^4.2558797 h<36,089.24ft
rho_Tr=0.2970756*rho_0
rho=rho_Tr*exp(-4.806346*10^-5(h-36089.24)) h>36,089.24ft

--

Relationship of pressure and indicated altitude:

alt_set in inches, heights in feet
P_alt_corr= 145442.2*(1- (alt_set/29.92126)^0.190261) or
P_alt_corr= (29.92-alt_set)*1000 (simple approximation)
P_alt= Ind_Alt + P_alt_corr

--

Relationship of pressure and density altitude:

D_Alt=P_alt+(T_s/T_r)*(1.-(T_s/T)^0.2349690)
(Standard temp T_s and actual temp T in Kelvin)

An approximate, but fairly accurate formula is:

D_Alt=P_Alt+118.6*(T-T_s)
where T and T_s may (both) be either Celsius or Kelvin

--

Density altitude example:

Let pressure altitude (P_alt) be 8000 ft, temperature 18C.

Standard temp (T_s) is given by

T_s=15-.0019812*8000=-0.85C = (273.15-0.85)K=272.30K

Actual temperature (T) is

18C=(273.15+18)K=291.15K

Density altitude (D_Alt) = 8000 +(272.30/.0019812)*(1-
(272.30/291.15)^0.2349690)

= 8000 + 2145 = 10145ft

or approximately:

Density Altitude=8000 +118.6*(18+0.85)=10236ft

--

Relationship of true and calibrated (indicated) altitude:

TA= CA + (CA-FE)*(ISADEV)/(273+OAT)

where

TA= True Altitude above sea-level
FE= Field Elevation of station providing the altimeter setting
CA= Calibrated altitude= Altitude indicated by altimeter when set to the

altimeter setting, corrected for calibration error.

ISADEV= Average deviation from standard temperature from standard in the air
column between the station and the aircraft (in C)

OAT= Outside air temperature (at altitude)

The above is more precise than provided by the E6B or similar.

--

Mach numbers, true vs calibrated airspeeds etc.

Mach Number (M) = TAS/CS
CS = sound speed= 38.967854*sqrt(T+273.15) where T is the OAT in celsius.
TAS is true airspeed in knots.

Because of compressibility, the measured IAT (indicated air temperature) is
higher than the actual true OAT. Approximately:

IAT=OAT+K*TAS^2/7592

The recovery factor K, depends on installation, and is usually in the range
0.95 to 1.0, but can be as low as 0.7. Temperatures are Celsius, TAS in
knots.

Also:

OAT = (IAT + 273.15) / (1 + 0.2*K*M^2) - 273.15

The airspeed indicator measures the differential pressure, DP, between the
pitot tube and the static port, the resulting indicated airspeed (IAS), when
corrected for calibration and installation error is called "calibrated
airspeed" (CAS).

For low-speed (M<0.3) airplanes the true airspeed can be obtained from CAS
and the density altitude, DA.

TAS = CAS*(rho_0/rho)^0.5=CAS/(1-6.8755856*10^-6 * DA)^2.127940
(DA<36,089.24ft)

Roughly, TAS increases by 1.5% per 1000ft.

When compressibility is taken into account, the calculation of the TAS is
more elaborate:

DP=P_0*((1+0.2*(IAS/CS_0)^2)^3.5 -1)
M=(5*((DP/P+1)^(2/7) -1))^0.5
TAS= M*CS

P_0 is is (standard) sea-level pressure, CS_0 is the speed of sound at
sea-level, CS is the speed of sound at altitude, and P is the pressure at
altitude.

These are given by earlier formulae:

P_0= 29.92126 "Hg = 1013.25 mB = 2116.2166 lbs/ft^2
P= P_0*(1-6.8755856*10^-6*PA)^5.2558797, pressure altitude, PA<36,089.24ft
CS= 38.967854*sqrt(T+273.15) where T is the (static/true) OAT in Celsius.
CS_0=38.967854*sqrt(15+273.15)=661.4786 knots

[Example: CAS=250 knots, PA=10000ft, IAT=2C, recovery factor=0.8
DP=29.92126*((1+0.2*(250/661.4786)^2)^3.5 -1)= 3.1001 "
P=29.92126*(1-6.8755856*10^-6 *10000)^5.2558797= 20.577 "
M= (5*((3.1001/20.577 +1)^(2/7) -1))^0.5= 0.4523 Mach
OAT=(2+273.15)/(1 + 0.2*0.8*0.4523^2) - 273.15= -6.72C
CS= 38.967854*sqrt(-6.7+273.15)=636.08 knots
TAS=636.08*0.4523=287.7 knots]

--

Some notes on the origins of some of the "magic" number constants in the
preceeding section:

6.8755856*10^-6 = T'/T_0, where T' is the standard temperature lapse rate
and T_0 is the standard sea-level temperature.

5.2558797 = Mg/RT_0, where M is the (average) molecular weight of air, g is
the acceleration of gravity and R is the gas constant.

0.2233609 = ratio of the pressure at the tropopause to sea-level pressure.

4.806346*10^-5 = Mg/RT_tr, where T_tr is the temperature at the tropopause.

4.2558797 = Mg/RT_0 -1

0.2970756 = ratio of the density at the tropopause to the density at SL
(rho_0)

145442 = T_0/T'

38.967854 = sqrt(gamma R T_0/M)

--

Relative humidity, dewpoint, frostpoint etc.

The relative humidity, f (as a fraction) is related to the temperature, T
and dewpoint Td by:

f= exp(17.27(Td/(Td+237.3)-T/(T+237.3)))

and to the frostpoint temperature Tf by:

f= exp(21.87(Tf/(Tf+265.5)-T/(T+265.5)))

Temperatures are in Celsius. Multiply f by 100 if you want a percentage. The
above are based on an empirical fit to the saturation vapor pressure of
water due to O. Tetens in Zeitschrift fur Geophysik, Vol VI (1930), quoted
in "Principles of Meteorological Analysis" by W. J. Saucier (Dover NY 1983).

This fit is:

e_s=6.11 * exp(bT/(T+a)) for the saturation vapor pressure e_s in mbar
over water a=237.3, b=17.27
over ice a=265.5, b=21.87

An alternative slightly more accurate fit (over water) is:
e_s = 6.10779 + T * (4.43652e-1 + T * (1.42894e-2 + T * (2.65064e-4 + T *

(3.03124e-6 + T * (2.03408e-8 + (6.13682e-11 * T))))))
(from Lowe, JAM (1977), 103)

Tables of Relative Humidity and Dewpoint vs Temperature and Wet Bulb
Temperature can be found in "Introduction to Meteorology" by Franklyn Cole
(Wiley NY 1975).

Inverting this to find dewpoint in terms of temp and RH:

Dewpoint Td=237.3/(1/(ln(f)/17.27+T/(T+237.3))-1)
Frostpoint Tf=265.5/(1/(ln(f)/21.87+T/(T+265.5))-1)

Given the wet bulb temperature Tw (C), the dry bulb temperature T (C), and
the pressure, p in mbar one gets the (approximate) relative humidity and
dewpoint by the following:

ed= 6.11*exp(17.27*T/(T+237.3)) /* SVP at dry-bulb temp
ew= 6.11*exp(17.27*Tw/(Tw+237.3)) /* SVP at wet-bulb temp
wd=0.62197*ed/(p-ed) /* saturation mixing ratio at T
ww=0.62197*ew/(p-ew) /* saturation mixing ratio at Tw
w=(2500.0*ww-1.0046*(T-Tw))/(2500.0+1.81*(T-Tw)) /* mixing ratio
f= w/wd /* relative humidity as a fraction
e= p*w/(0.62197+w) /* vapor pressure (mb)
Td=(237.3*log10(e)-186.527)/(8.286-log10(e)) /* the dewpoint (C)

This uses the Tetens fit for the saturated vapor pressure and treat water
vapor as an ideal gas, both of which are pretty good approximations. If you
want better refer to the Smithsonian Meteorological Tables (Smithsonian
Institute 1963)

--

A related formula gives the increase in effective density altitude due to
humidity. It only addresses the reduction of air density, and not the effect
on engine power output:

Increase(ft)=0.267*RH*(T+273)*exp(17.3*T/(T+237))*(1-0.00000688*H)^(-5.26)

RH (f above) is the relative humidity expressed as a fraction, T is the
temperature in Celsius and H is the pressure altitude in feet.

Examples are:

SL/30C/100% -> 565' increase in DA
10000/5C/80% -> 124' increase in DA
5000/40C/80% -> 977' increase in DA.

In terms of the dewpoint, Td the formula is:

Increase(ft)=0.267*(T+273)*exp(17.3*Td/(Td+237))*(1-0.00000688*H)^(-5.26)

which clearly agrees with the above when T=Td and RH=1.

--

Bellamy's formula.

Bellamy's formula for the wind drift and (single) wind correction angle is
as follows:

Drift (nm) = 21500*(p2-p1)/(sin(latitude)*TAS) (p2-p1 in inches)
= 635 *(p2-p1)/(sin(latitude)*TAS) (p2-p1 in mB)

Wind Correction Angle= 1230000*(p2-p1)/(sin(latitude)*TAS*Dist) (inches)
= 36300* (p2-p1)/(sin(latitude)*TAS*Dist) (mB)

p2-p1 is the difference between the destination and departure pressures.
latitude is the average latitude on the route. TAS is the true airspeed in
knots. Dist is the distance in nm.

If the destination pressure is higher, the drift is to the left, and the
required WCA is to the right (and vice-versa).

Example:

SFO -> LAX 300nm at 100 knots, latitude 36 degrees. Suppose the LAX
altimeter setting is 0.2" higher (better the actual pressure difference at
cruise altitude if you can get it).

Drift = 21500*0.2/(sin(36)*100)= 73nm left
WCA=1230000*0.2/(sin(36)*100*300)= 14 degrees right

A discussion of this is in Barry Schiff's "Proficient Pilot I".

--

Unit conversions, etc.

1 knot = 1.150779 mph
1 mph = 0.868976 knot
1 knot = 1.852000 km/hr*
1 km/hr= 0.539968 knot
1 mph = 1.609344 km/hr*
1 km/hr= 0.621371 mph

* = exact conversion factor

--

Ellipsoidal parameters:

Name Major axis, a (km) Flattening (f)
WGS84 6378.13700 1/298.257223563
GRS80/NAD83 6378.13700 1/298.257222101
WGS66 6378.145 1/298.25
GRS67/IAU68 6378.16000 1/298.2472
WGS72 6378.135 1/298.26
Krasovsky 6378.245 1/298.3
Clarke66/NAD27 6378.2064 1/294.9786982138

Reference: Coordinate Systems and Map Projections, D. H. Maling (Pergamon
1992) (except Clarke66 !)

To convert between geocentric (radius r, geocentric latitude u) and geodetic
coordinates (geodetic latitude v, height above the ellipsoid h):

tan(u) = tan(v)*(h*sqrt((a*cos(v))^2+(b*sin(v))^2) +b^2)/
(h*sqrt((a*cos(v))^2+(b*sin(v))^2) +a^2)

r^2 = h^2 + 2*h*sqrt((a*cos(v))^2+(b*sin(v))^2)+
(a^4-(a^4-b^4)*(sin(v))^2)/(a^2-(a^2-b^2)*(sin(v))^2)

a and b are the semi-major axes of the ellipsoid, and b=a*(1-f), where f is
the flattening. Note that geocentric and geodetic longitudes are equal.

--

Turns and pivotal altitude

In a steady turn, in no wind, with bank angle, b at an airspeed v

tan(b)= v^2/(R g)
v= w R

where g is the acceleration due to gravity, R is the radius of turn and w is
the rate of turn.

Pivotal altitude h_p is given by

h = v^2/g

With R in feet, v in knots, b in degrees and w in degrees/sec (inconsistent
units!), numerical constants are introduced:

R =v^2/(11.23*tan(0.01745*b))

(Example) At 100 knots, with a 45 degree bank, the radius of turn is
100^2/(11.23*tan(0.01745*45))= 891 feet.

The rate of turn w is given by:

w = 96.7*v/R

(Example) = 96.7*100/891= 10.9 degs/sec

The bank angle b_s for a standard rate turn is given by:

b_s = 57.3*atan(v/362.1)

(Example) for 100 knots, b_s = 57.3*atan(100/362.1) = 15.4 degrees
A useful rule-of-thumb, accurate to ~1 degree for speeds up to 250

knots, is b_s= v/7 (v in knots).

The pivotal altitude is given by:

h_p = v^2/11.23

(Example) At 100 knots groundspeed the pivotal altitude is 100^2/11.23 = 890
feet.

--

Revision History

Version 1.24 2/10/99
Corrected some last digit rounding errors in the rhumb line examples

1.23
Additions to spherical triangle section
1.22
Course between points formula fails if the initial point was exactly a pole.

This has to be special-cased.
1.21

Added Mach -> IAS formulae

1.20

Third numerical example of the effect of humidity on density
altitude corrected.

Added standard rate turn bank angle rule-of-thumb.

1.19

Another bug in the intersection section... The test for input data
where "no intersection exists", or more precisely, when it's ambiguous
which of the two great circle intersections is desired, was
misplaced. With valid data, no problem...

The Clarke66/NAD27 inverse flattening was incorrect in my reference book.
Corrected. Thanks to Larry Lewis.

1.18

Corrected equation for dst12 in intersection calculation. It should
have been the same as for the distance between points given earlier.
A factor of 2 was dropped. The numerical example used the correct
formula.

1.17

(1/26/98) Converted from 1962 to 1976 US Standard Atmosphere (=ICAO standard
atmosphere). Made unit conversions more accurate. (by Doug Haluza)

1.16

(10/26/97) Corrected conversion to hh:mm:ss
seconds=60*(60*(angle_degrees-degrees)-minutes))

1.15

(9/11/97) Added European variation fit

1.14

(9/2/97) Added warnings about arguments of asin and acos being out of range
from rounding error.

1.13

(8/31/97) The rhumb line section was rewritten. Erroneously corrected one
formula, then changed it back! Added a numerical example for the calculation
of the endpoint of a rhumb line. Added some more spherical triangle
formulae.

1.12

Somehow I dropped a line in the the 1.08 atan2 fix. Sigh! Added turn radius,
pivotal altitude formulae.

1.11

Made "Lat/lon given radial and distance" handle the pole endpoint case more
elegantly.

1.10

Add "find CRS, GS" to wind triangle section

1.09

Added geodetic/geocentric coordinate conversion

1.08

Added an alternative method for calculation of course between two points,
not requiring pre-computation of the distance between them.

Changed the definition of atan2 to the ANSI standard one where it is defined
to have a range of -pi < atan2 <= pi, rather than 0 <= atan2 < 2pi. This was
a bug only if had you used the previous version to define asin in terms of
atan via atan2. No one reported it though...

Corrected some damaged formulae in the intersection section of the html
version.

1.07 (4/1/97)

Add additional spherical triangle formulae. Correct the condition
(dlon<pi/2) for the validity of the short range formula in the "lat/lon
given radial and distance" section.

1.06 (3/3/97)

Correct typo in html version of HDG/GS formula. (minus sign) Definitions of
a and b swapped in Tejen's fit to saturation vapor pressure.

1.05 (12/17/96)

Correct test for pole in formula for computing lat/long of a point a given
radial and distance: lat=0 => cos(lat)=0

1.04 (11/11/95)

Add formula for computing lat/long of a point a given radial and distance
valid when the distance can exceed one quarter of the earth's circumference.

Note that atan2(0,0) should return an error.

Add rhumb line formulae and example.

Change intersection calculation to only provide result when intersection of
radials exists.

Comments, corrections, suggestions to:
Ed Williams
72347.1516@CompuServe.COM

Home page http://www.best.com/~williams

